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Abstract
We calculate the excitation spectrum of the electron liquid using the formalism
of correlated basis functions including time-dependent pair correlations. Using
the static structure factor of the ground state as sole input, our formalism is
naturally suited for studying correlation effects on the energy loss function.
The most prominent example is the double plasmon, for which our results are
in good agreement with recent experiments on various alkali metals.

PACS numbers: 71.10.Ca, 71.10.Li, 71.45.Gm

1. Introduction

Recent inelastic x-ray scattering measurements [1, 2] have renewed the interest in the dynamic
excitation spectrum of the electron liquid, a successful reference model for various charged
systems [3]. A shoulder was detected on the high energy side of the dynamic structure
factor S(q, ω). Computations of the leading proper polarization Feynman diagrams outside
the particle–hole continuum performed by Sturm and Gusarov [4] show that this structure in
S(q, ω) can be attributed to a correlation-induced double-plasmon excitation.

For the ground state, a most powerful approach starts with a Jastrow ansatz for the
wavefunction, including correlations in a physically intuitive way from the start,

|�0〉 ≡ F |�0〉 = exp

{
1

2

(∑
i

u(1)(ri ) +
∑
i<j

u(2)(ri , rj ) + · · ·
)}

|�0〉. (1)

Here, �0 denotes a Slater determinant and u(n) are determined by functionally minimizing the
energy E0 = 〈�0|H |�0〉. At the level of u(3), for charged bosons [5] this yields a numerically
small energy correction, equivalent to the sum of individually rather large contributions of many
Feynman diagrams. We are thus confident that optimizing the action for the generalization of
(1) to excited states,

|�t 〉 = e−iE0t/h̄

√
N

F eδU(t)|�0〉, N ≡ 〈�t |�t 〉 (2a)
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Figure 1. (a) Static structure factor, (b) particle–hole interaction and (c) local field correction from
Vph ≡ (1−G(q))vC. The curves result from using the data from MC (full lines [6], short dashed
lines [9]) and from FHNC (dashed lines [7]); the dash-dotted line in (b) is the Coulomb potential.
The density ρ = 3/(4πa3

Br3
s ) corresponds to rs = 5.

δU(t) =
∑
ph

δu
(1)
ph(t)a

†
pah +

1

2

∑
pp′hh′

δu
(2)
pp′hh′(t)a

†
pa

†
p′ah′ah + · · · , (2b)

again properly captures the relevant physics in an optimal way.
Aiming at explaining the excitation spectrum, we use the ground-state static structure

factor S(q) as sole input for our theory, taken either from recent Monte Carlo (MC) [6] or from
hypernetted chain (FHNC) [7] computations. Neglecting dynamic pair correlations δu(2)(t)

in (2b) reproduces the random phase approximation (RPA) with the Coulomb interaction vC

replaced by Vph (SF(q) is the free static structure factor)

Vph(q) = h̄2q2

4m

[
1

S2(q)
− 1

S2
F(q)

]
. (3)

Figure 1 shows that these interactions are noticeably different despite the close agreement of
the MC and FHNC data for S(q). The corresponding static local field correction G(q) does
not show the correct large q behavior [3, 8], reflecting the necessity to include higher order
dynamic correlations even for obtaining the correct ω=0 response.

2. Formalism

The equations of motion for the correlation amplitudes δu(n)(t) yield a linear density–density
response function that takes the following form [10, 11]:

χ(q, ω) = χs(q, ω)/[1 − Vph(q)χs(q, ω) − 	(q, ω)]. (4)

Though a clear-cut distinction between single-particle (sp) and pair properties is ambiguous
in quantum systems, important arguments have been given [12, 13] that certain sp properties
are most suitably accounted for in the numerator of χ (in contrast to including them in a
‘local field correction’ G(q, ω)). Our formalism gives an additive correction to the Lindhard
function χ0 = χ0++χ0− in the numerator,

χs(q, ω) = χ0 − χ0+χ0−(A+ + A−), χ0± ≡ 1

N

∑
h

nh (1 − nh+q)

±h̄ω − (eh+q − eh)
(5)
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Figure 2. Dynamic structure factor for three typical wave vectors (measured in Fermi wave
vectors kF), (a) q = 0.2, (b) q = 0.4 and (c) q = 1.0, based on the FHNC [7] input. The
densities correspond to the experimentally investigated simple metals, Al (rs = 2.06, full line),
Mg (rs = 2.66, short-dashed line) and Na (rs = 3.99, chained line).

(where N is the particle number, ek = h̄2k2/2m; nk are the free Fermi functions). Using the
pair analogues μ0± [11] of the partial Lindhard functions χ0±, the direct correlation function
X(q) = 1/SF(q) − 1/S(q), and the definition −q′′ = q + q′, we obtain

	 = S2 + S2
F

4SSF
χ0(A+ + A−) +

1

2
(χ0+ − χ0−)(A+ − A−) − χ0+χ0−A+A−, (6)

A±(q, ω) = 1

2N

∑
q′

|Wq,q ′,q ′′ |2μ0±
q ′q ′′(h̄ω ± eq ′X(q ′) ± eq ′′X(q ′′)), (7)

and a lengthy expression1 for the vertex Wq,q ′,q ′′ .
A common simplification is to approximate the fermionic χ0 by a single-mode function;

this in turn leads to χ RPA being replaced by the plasmon–pole approximation χ PPA with
excitations at the Bijl–Feynman energies εq ≡ eq/S(q). The analogous procedure for the
pair Lindhard function μ0 gives

μ0±
q ′q ′′(ω ± eq ′X(q ′) ± eq ′′X(q ′′)) → SF(q

′)SF(q
′′)

±h̄ω − εq ′ − εq ′′
, (8)

with obviously a pole at a ‘double-Feynman excitation’ (a double plasmon for q → 0).

3. Results

In figure 2 we show Im χ = −π
h̄N

S(q, ω) for q values where the plasmon is (a) well outside the
sp continuum, (b) close to entering it, and, finally, (c) fully Landau damped. The finite width
in (a) and (b) is due to decay into pair excitations. Our results are very close for both the MC
and FHNC input data, despite the differences seen in Vph in figure 1(b).

To the right of the main (i.e. plasmon-) peak in figures 2(a) and (b) a shoulder arises
from a double-plasmon excitation; in (c) it is visible only for the largest rs-value. Obviously,
with increasing q determining the exact position of this peak becomes difficult. In [2] this
was achieved by subtracting an experimentally fitted tail from the spectra. We here prefer

1 See [11], appendix B. The fermionic Wq,q ′,q ′′ reduces to the much simpler equation (17) of [11] in the bosonic
limit, which was first derived in [14].
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Figure 3. Dynamic structure factor (log scale) for (a) Mg (rs = 2.66) and (b) Na (rs = 3.99, room
temperature experiments). Full line: our theoretical double-plasmon peak; triangles: experiment
[2]; circles: theory of [2, 4] (from Feynman diagrams).
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Figure 4. IXS data of Al (points) and present theory (full line), the broken line is obtained with
equation (8). In (a) the experimental data were scaled by a factor 0.4; (b) and (c) show log S(q, ω).
The wave vector q/kF is 0.64 in (a) and (b) and 1.01 in (c).

to take advantage of expression (8). Figure 3 shows the comparison of the resulting double-
plasmon peak with the experimental one. We attribute the slightly different dispersion to the
ambiguity of exactly determining the peak position. The remarkably good agreement with
the measurements shows that our approach indeed models the essential physics of dynamic
correlations.

Finally, in figure 4 we compare the calculated and measured S(q, ω) for Al (we rescale
the experimental data to give the same well-known S(q) [6, 7]). At q = 0.64kF we find the
plasmon essentially at its RPA position, substantially broadened due to decay into pair
excitations, but well separated from the single-particle–hole continuum. By contrast, the
main experimental peak is found 13% below the RPA value with no distinction from particle–
hole excitations. However, the spectrum in this region is largely influenced by band-structure
effects [15]. The situation is similar in Na.
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